On ω -almost-regularity and ω -semi-regularity in topological spaces
نویسندگان
چکیده
منابع مشابه
A Homomorphism Concept for ω -Regularity
The Myhill-Nerode Theorem (that for any regular language, there is a canonical recognizing device) is of paramount importance for the computational handling of many formalisms about finite words. For infinite words, no prior concept of homomorphism or structural comparison seems to have generalized the Myhill-Nerode Theorem in the sense that the concept is both language preserving and represent...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملRegularity Problems for Weak Pushdown ω-Automata and Games
We show that the regularity and equivalence problems are decidable for deterministic weak pushdown ω-automata, giving a partial answer to a question raised by Cohen and Gold in 1978. We prove the decidability by a reduction to the corresponding problems for deterministic pushdown automata on finite words. Furthermore, we consider the problem of deciding for pushdown games whether a winning stra...
متن کاملC 1 , ω ( · ) - regularity and Lipschitz - like properties of subdifferential
It is known that the subdifferential of a lower semicontinuous convex function f over a Banach space X determines this function up to an additive constant in the sense that another function of the same type g whose subdifferential coincides with that of f at every point is equal to f plus a constant, i.e., g = f + c for some real constant c. Recently, Thibault and Zagrodny introduced a large cl...
متن کاملω-NARROWNESS AND RESOLVABILITY OF TOPOLOGICAL GENERALIZED GROUPS
Abstract. A topological group H is called ω -narrow if for every neighbourhood V of it’s identity element there exists a countable set A such that V A = H = AV. A semigroup G is called a generalized group if for any x ∈ G there exists a unique element e(x) ∈ G such that xe(x) = e(x)x = x and for every x ∈ G there exists x − 1 ∈ G such that x − 1x = xx − 1 = e(x). Also le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The journal of mathematics and computer science
سال: 2023
ISSN: ['2008-949X']
DOI: https://doi.org/10.22436/jmcs.031.02.05